
1.1 INTRODUCTION

Metric space is an indispensable intermediate in course of evolution of the general topological
spaces. It generalises the idea of distance between two points on the real line. Whenever we
study the theory of functions of a real variable, the notion of distance between two real numbers
intuitively comes. As for example, if we say  x → a, we mean that the absolute difference
between a preassigned real number ‘a’ and the values the variable ‘x’ assumes, approaches
zero—in mathematical notation, | x – a | → 0. If one keeps in mind Cantor’s geometric
presentation of real numbers by points on a directed line, then the notation | x – a | → 0 is
viewed as equivalent to making distance between two points x and a on the real line tend to
zero. Thus the idea of distance between two points on the real line plays a vital role in
formulating the basic things like limit, continuity, differentiability, convergence in the real
analysis.

Let’s observe some notable properties of distance | x – a | between two real numbers x
and a. We agree to write | x – a | ≡  d(x, a), a notation which we will carry to more generalised
discussions coming up.

(P1) d(x, a) ≡ | x – a | ≥ 0 (non-negativity) and
d(x, a) = 0 iff | x – a | = 0, i.e., iff x = a (positive-definiteness)

(P2) d(x, a) ≡ | x – a | = | a – x | ≡ d(a, x) (symmetry)
(P3) d(x, y) ≡ | x – y | = | x – a + a – y | ≤ | x – a | + | a – y |

 ≡ d(x, a) + d(a, y), ( triangle inequality).
We now generalise the concept of ‘distance’ to an arbitrary non-empty set X, where

distance function is defined in any way we like, the only constraint being the simultaneous
satisfaction of the properties (P1), (P2), (P3) by it. Infact, we axiomatize the three properties,
viz, non-negativity and positive-definiteness, symmetry and triangle inequality in the following
definition:

Definition 1.1.1  Let X be a non-empty set and d: X × X → R be a function that satisfies the
conditions :

(d1) d(x, y) ≥ 0 ∀x, y ∈ X and d(x, y) = 0 iff x = y
(d2) d(x, y) = d(y, x) for x, y ∈ X
(d3) d(x, y) ≤ d(x, z) + d(z, y) for any x, y, z ∈ X.
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The function d(·, ·) satisfying (d1), (d2) and (d3) is called a metric and the structure
(X, d) is called a metric space. Here we are not concerned with the specific objects (called
points) of X and not even the specific rule of assignment d(·, .).

Note 1  If one defines d: X × X → R+ ∪ {0}, then the non-negativity property is redundant.

Note 2  Once we are convinced about the underlying metric d, we express (X, d) by mere X with
the metric structure implied.

Note 3  The conditions which d(·, ·) satisfies just mimic the properties of the distance we are
accustomed for real numbers, and hence these properties bear same names as their real-line counterparts.

Note 4. The non-negativity property of a metric is a consequence of its other properties as for
any x, y ∈ X, 0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y)

 Note 5. In a metric space (X, d), d(x1, xn) ≤ d x xi i
i

n

( , )+
=

−

∑ 1
1

1

 for any x1, x2, ..... xn ∈ X.

It is an extension of triangle inequality and known as polygonal inequality (see exercise 5).
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Fig 1.1.1 (a) Triangle Inequality Fig. 1.1.1 (b) Polygonal Inequality (n = 5)

Note 6. At least for historical interest it is very curious that the motivation of introducing a
metric in a function space evolved from classical brachistochrone problem of variational calculus. The
brachistochrone problem, as we all know, deals with finding the shape of a smooth curve in a vertical
plane along which heavy particle should slide under the action of gravity so that it consumes least time
in traversing from a given point A to another given point B, A being sited higher than but not vertically
above B. Thus we get a real valued function (time) defined on the family of smooth curves joining two
given points A and B. If l be a specific curve of this family and t(l) be the corresponding time of descent,
brachistochrone problem aims at minimising t(l) and hence find the curve of quickest descent.

A(x , y )1 1

B(x , y )0 0
Curve of
quickest descent

Fig. 1.1.2  Family of smooth curves (parameter l )  joining A and B
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Based on the difference in the time of descent one may be inclined to define a distance between
two smooth curves joining two given points A and B and make foundation for defining a real-valued
function, viz. metric, having space of curves as its domain.

Example 1.1.1  Let d: R × R → R be a function defined by d(x, y) = | x – y |, x, y ∈ R. To show
that (R, d) is a metric space.

Solution  Since | x – y | ≥ 0 and | x – y | = 0 iff x = y, (d1) follows. The other properties also
follow as they are basically (P2) and (P3). Thus d is a metric on R and consequently (R, d) is a
metric space. �

As a prerequisite to the next example, we now state and prove Cauchy-Schwarz
inequality:

If {p1, p2, ..., pn} and {q1, q2, ..., qn} be two sets of real numbers, then
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Proof: (i) Let µ be any real number.

Define  f (µ) = ( )p qi i
i
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∴ f (µ) ≥ 0 and is a quadratic in µ. If µ1 and µ2 be two distinct real roots of f (µ) = 0, then
we may write

f (µ) = ( ) ( )( )p q qi i
i
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Thus for any real t satisfying µ1 < t < µ2, f (t) becomes negative contradicting the fact
f(µ) ≥ 0 for all µ ∈ R. Thus f (µ) = 0, i.e., the quadratic equation
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cannot have two distinct real roots. This implies

p q p qi i
i

n

i
i

n

i
i

n

= = =
∑ ∑ ∑
F
H
GG

I
K
JJ −

F
H
GG

I
K
JJ
F
H
GG

I
K
JJ

1

2

2

1

2

1

 ≤ 0 (QED)
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(QED)

Remark 1.1.1 Cauchy-Schwarz inequality may be deemed as an extension of the idea of dot product-

norm relation  | . | | | | |a b a b
→ → → →

≤2 2 2 encountered in vector analysis.
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Taking the positive square root we get our desired result.

Example 1.1.2 The n-dimensional Euclidean space Rn is a metric space with respect to the
function d: Rn × Rn → R, defined by

d(x, y) = ( )x yi i
2
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n
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where x ≡ (x1 , x2 , ..., xn ) and y ≡ (y1 , y2 , ..., yn ) ∈ Rn, xi, yi’s belonging to R.

Solution:  Obviously d(x, y) ≥ 0 ∀ x, y ∈ R,

 d(x, y) = 0 iff ( )x yi i
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 = 0 i.e., iff xi = yi  ∀ i = 1, 2, ..., n.

Hence  x = y  iff d(x, y) = 0.
Now let x ≡ (x1, x2, ..., xn), y ≡ (y1, y2, ..., yn) and z ≡ (z1, z2, ..., zn) be three arbitrary

elements of Rn.
Since xi, yi, zi ∈ R ∀ i = 1, 2, ..., n and pi ≡ xi – yi and qi ≡ yi – zi ∈ R, obviously

pi + qi = (xi – zi) ∀ i = 1, 2, ..., n.
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By the corollary we just proved,
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i.e., d(x, z) ≤ d(x, y) + d(y, z) (Triangle inequality)

Finally, d(x, y) = x y y xi i
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 = d(y, x), (symmetry).

All these prove that d(·, ·) is a metric known popularly as Euclidean Metric or sometimes
Usual Metric. �

As a by product of this case we have the following example:

Example 1.1.3 The Euclidean metric d: R2 × R2 → R is defined by d(x, y) = ( ) ( )x y x y1 1
2

2 2
2− + − ,

where x ≡ (x1 , x2) ∈ R2 and y ≡ (y1 , y2) ∈ R2. The metric space R2 ≡ (R2, d) is called Euclidean
plane. The proof is same in letter and spirit as the example 1.1.2.

So on the same non-empty set X many metrics can be defined, as a result of which the
same set X is endowed with different metric space structures. The following example is a nice
illustration.

Example 1.1.4 Let X be any non-empty set and d is a metric defined over X. Let m be any
natural number so that we define dm(x, y) = md(x, y) for any x, y ∈ X. We are to show that dm(·, ·)
is also a metric. The new metric spaces {(X, dm)/m = 1, 2, ...} are thus obtained from (X, d).

Solution:  (i) dm(x, y) = md(x, y) ≥ 0 ∀ x, y ∈ X
Moreover dm(x, y) = 0 iff md(x, y) = 0 i.e., iff d(x, y) = 0 (since m is a natural number at

our disposal), i.e., iff x = y.
 (ii) dm(x, y) = dm(y, x) since d(x, y) = d(y, x)
(iii) dm(x, y) ≡ md(x, y)

≤ m(d(x, z) + d(z, y))
= md(x, z) + md(z, y)
≡ dm(x, z) + dm(z, y),  for any x, y, z ∈ X.

Hence properties (d1) – (d3) are satisfied by dm (·, ·). This metric is called dilation
metric.
Remark 1.1.2  The choice of m being a natural number has no specific advantage. However for m > 1, a
‘dilation’ and for 0 < m < 1, a ‘contraction’ of distance occurs.

Example 1.1.5 The set Rn is also a metric space with respect to another metric defined by

d*(x, y) = |x y |i i
i 1

n

−
=
∑ , where x ≡ (x1 , x2 , ... xn ),  y ≡ (y1 , y2 , ..., yn ), xi , yi ∈ R, i = 1(1) n.
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Solution: The conditions (d1) and (d2) are straight forward as in example 1.1.3. For (d3), let
x, y, z ∈ Rn where x ≡ (x1, x2, ..., xn), y ≡ (y1, y2, ..., yn) and z ≡ (z1, z2, ..., zn); xi , yi , zi ∈ R, i = 1, 2,
..., n.

Further d*(x, z) = | |x zi i
i

n

i

n

− =
= =
∑ ∑

1 1

| xi – yi + yi – zi |
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= d*(x, y) + d*(y, z)
Thus (Rn, d*) is a metric space.
The metric d* is called the rectangular metric on Rn. �
Earlier we have shown in example 1.1.3 that the function d1 defined by d1(x, y)

= ( ) ( )x y x y1 1
2

2 2
2− + −  with x ≡ (x1, x2), y ≡ (y1, y2) is a distance function. Again it readily

follows from example 1.1.5 that d2(x, y) = | x1 – y1 | + | x2 – y2 | is also a distance function on R2.
We are interested in scanning the distance functions d1 and d2 from the geometrical point of
view.

 The metric d2 (.,.) is known as Taxicab metric in R2 as it measures the distance a taxi
would travel from a point A(x1,x2) to some other point B(y1,y2) if there were no one way streets.
Taxicab metric or its generalisation, viz, rectangular metric geometrically presents the sum of
projections of the standard Euclidean distance [c.f. example 1.1.2 and 1.1.3] on the co-ordinate
axes.

|x – y |2 2

D


C


C D|x – y |1 1

B(x – y )2 2

�(x – y ) + (x – y )

1
1

2
2

2

2

A(x – y )1 1

Fig. 1.1.3  Representation of Euclidean metric,
Taxicab metric and Chebyshev metric in the backrop of R2.

The rectangular metric is used in communication theory under the name “Hamming
distance” that measures the discrepancy between two digital messages. It was introduced by
R. Hamming (1950). (By a digital message of length n we mean a n-component column vector
of 0’s and 1’s). The Hamming distance between two digital messages of same length is defined
to be the number of co-ordinates in which they differ. So if x = (x1, x2, ...,xn)T and y = (y1, y2,
...,yn)T be any two digital messages of length n, i.e. xi’s and yi’s are only 0’s and 1’s, their Hamming

distance dH (x, y) is given by x yi i
i

n

−
=
∑

1

. If there is a single discrepancy between the sent and
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received digital messages, their Hamming distance is unity. Thus Hamming distance is a metric
on the set of all digital messages of a preassigned length.

Again consider the semi circular path with AB as diameter. Then obviously it will pass
through C.

D

x
+ y

21

1 ,
x

+ y

22

2 B(y , y )1 2

C(y , x )1 2

A(x
, x )
1

2

Fig. 1.1.4  Semicircular path joining two points

Clearly D 
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and its length is
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2( ) ( )x y x y− + −  = 
π
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 . d1(x, y)

Since d1(x, y) is a distance function on R2 and 
π
2

 > 1, by example 1.1.4, it follows that

d3(x, y) = 
π
2

 d1(x, y) is also a distance function.

Thus we observe that upon the same non-empty set R2, one can define more than one
distance function or metric; it might be the straight linear distance or a broken-line distance or
even a semicircular arcual distance. So whenever we talk of a metric space over R2, we must
keep in mind what specific kind of distance we are thinking.

Example 1.1.6  The set Rn is a metric space with respect to the metric defined by d(x, y) =
Max.{| xi – yi |; i = 1, 2, ..., n} where x ≡ (x1 , x2 , ..., xn ), y ≡ (y1 , y2 , ..., yn ), xi, yi ∈ R, i = 1, 2, ..., n.

Solution: Since | xi – yi | ≥ 0 ∀ i = 1, 2, ..., n, Max. {| xi – yi |; i = 1, 2, ... n} ≥ 0. Again if x = y,
then xi = yi ∀ i = 1, 2, ..., n.
So | xi – yi | = 0 ∀ i = 1, 2, ..., n and hence Max. {| xi – yi |; i = 1, 2, ..., n} = 0 ; i.e., d(x, y) = 0.
On the other hand if d(x, y) = 0 then Max. {| xi – yi|; i = 1, 2, ..., n} = 0
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⇒ | xi – yi | = 0  ∀ i = 1, 2, ..., n, since each | xi – yi | ≥ 0
∴ x = y.
Thus d(x, y) = 0 if and only if x = y.
Next let x, y ∈ Rn where x ≡ (x1, x2, ..., xn), y ≡ (y1, y2, ..., yn) with xi, yi ∈ R, i = 1, 2, ..., n.
Then d(x, y) = Max. {| xi – yi |; i = 1, 2, ..., n} = Max. {| yi – xi |;  i = 1, 2, ..., n} = d(y, x).
Finally for x, y, z ∈ Rn, where  x ≡ (x1, x2, ..., xn), y ≡ (y1, y2, ..., yn),

z ≡ (z1, z2, ..., zn), and xi , yi , zi ∈ R, i = 1, 2, ..., n.
d(x, z) = Max. {|  xi – zi|, i = 1, 2, ..., n}

 = Max. {| xi – yi + yi – zi |;  i = 1, 2, ..., n}
 = Max. {| xi – yi | + | yi – zi |; i = 1, 2, ..., n}
 = Max. {| xi – yi |; i = 1, 2, ..., n} + Max. {| yi – yi |; i = 1, 2, ..., n}
 = d(x, y) + d(y, z).

Thus d is a metric on Rn and hence (Rn, d) is also metric space. �
Remark 1.1.3 In example (1.1.6), the Chebyshev metric presents the maximum of the projections of the
standard Euclidean distance on the co-ordinate axes (see fig 1.1.3). The metric d above is known as
Chebyshev metric.

Example 1.1.7 The set R of real numbers is a metric space with respect to the metric defined by
d(x, y) = Min. {1, | x – y |}, x, y ∈ R.

Solution:  Since | x – y | ≥ 0 ∀ x, y ∈ R, Min. {1, | x – y |} ≥ 0
Also if x = y, then Min. {1, | x – y |} = Min. {1, 0} = 0
Again if Min. {1, | x – y |} = 0, then | x – y | = 0 which implies x = y. Thus d(x, y) = 0, if and only
if x = y.

Next d(x, y) = Min. {1, | x – y |} = Min. {1, | y – x |} = d(y, x).
Finally let x, y, z ∈ R. So d(x, z) = Min. {1, |x – z|}
If Min. {1, | x – z |} = 1 then as | x – z | ≤ | x – y | + | y – z |,
Min {1, | x – z |} = Min {1, (| x – y | + | y – z |)} ≤ Min. {1, | x – y |} + Min. {1, | y – z|}
Again if Min {1, | x – z |} = | x – z |, then also
Min. {1, | x – z |} ≤ Min {1, | x – y |} + Min {1, | y – z |}
∴ Under all circumstances, d (x, z) ≤ d(x, y) + d(y, z)
Thus d is a metric on R and hence (R, d) is a metric space. �

Remark 1.1.4 If (X, d) be any metric space, then it is easy to prove that d1 (. , .) defined by d1 (x, y) =
Min {1, d (x, y)} ∀ x, y ∈ X is also a metric on X.

This metric is known as standard bounded metric on X. In fact, corresponding to any metric
d (. , .) there always exists a metric d1(. , .) defined above. In the  next chapter we shall see that in this
metric space (X, d1) every subset is bounded. One can generalise the definition of a bounded metric
corresponding to d (. , .) as dK (. , .) where

dK (x, y) = Min {K, d (x, y)} ∀ x, y ∈ X  with K > 0

Example 1.1.8  Let C[a, b] be the set of all real-valued continuous functions over [a, b]. Then
C[a, b] is a metric space with respect to the metric defined by

 d(f, g) = sup
u a,b∈[ ]

| f(u) – g(u) |,  f, g ∈ C[a, b]

Solution: According to the definition, d( f, g) ≥ 0. Further if f = g then f (u) = g(u) ∀ u ∈ [a, b].

Therefore | f (u) – g(u) | = 0 ∀ u ∈ [a, b] and hence sup
u a b∈[ , ]

| f (u) – g(u) | = 0. On the other hand



METRIC SPACES: BASIC PROPERTIES AND EXAMPLES 9

if d(f, g) = 0 then sup
u a b∈[ , ]

| f (u) – g(u) | = 0. This means | f (u) – g(u) | = 0 for all u ∈ [a, b] so that

f = g. Thus d(f, g) = 0 if and only if f = g.
Next let f, g ∈ C[a, b].

Then, d(f, g) = sup
u a b∈[ , ]

| f(u) – g (u) | = sup
u a b∈[ , ]

| g(u) – f (u) | = d(g, f).

Finally let  f, g, h ∈ C[a, b]. Then ∀ u ∈ [a, b],
| f (u) – h(u)| ≤ | f (u) – g(u)| + | g(u) – h(u)|

 ≤ sup
u a b∈[ , ]

| f (u) – g(u)| + sup
u a b∈[ , ]

| g(u) – h(u)|

 = d(f, g) + d(g, h).

Taking supremum over [a, b], we get sup
u a b∈[ , ]

 | f (u – h(u)| ≤ d(f, g) + f (g, h)

∴  d(f, h) ≤ d(f, g) + d(g, h).

Thus d satisfies all the conditions (d1) to (d3) making (C[a, b], d) a metric space. �
This metric d is called the sup metric on C[a, b].
In example (1.1.8), the so called supmetric or uniform metric geometrically presents

maximum pointwise separation between two continuous functions f and g defined over [a, b].

g

f

x = bx = a

|f(
x)

–
g(

x)
|

Fig. 1.1.5 Representation of Supmetric of example (1.1.8)

Example 1.1.9 C[a, b] is also a metric space with respect to the metric defined by

d*(f, g) = 
a

b
|f u g u |duz −( ) ( )  for f, g ∈ C[a, b].

Solution: Since | f (u) – g(u) | is also continuous for f, g ∈ C[a, b], it is integrable over
[a, b]. So the definition is meaningful. Since | f (u) – g(u) | is non-negative, d*(f, g) ≥ 0 for
all f, g ∈ C[a, b]. Further if f = g then | f (u) – g(u) | = 0 ∀ u ∈ [a, b] and consequently

d*(f, g) = 0. Again if 
a

bz | f (u) – g(u) | du = 0 then since | f (u) – g(u) | is non-negative and

continuous on [a, b], | f (u) – g(u) | = 0 ∀ u ∈ [a, b] which implies f = g.
Next let f, g ∈ C[a  b].
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∴ d*(f, g) = 
a

b
f u g u duz −| ( ) ( )|  = 

a

b
g u f u duz −| ( ) ( )|  = d*(g, f).

Finally if f, g, h ∈ C[a, b], then for all u ∈ [a, b]
  | f (u) – h(u) | ≤ | f (u) – g(u) | + | g(u) – h(u) |

∴
a

bz | f (u) – h(u)| du ≤ 
a

bz {f(u) – g(u) | + | g(u) – h(u)|} du

= 
a

b

a

b
f u g u du g u h u duz z− + −| ( ) ( )| | ( ) ( )|

∴ d*(f, h) ≤ d*(f, g) + d*(g, h).
Thus d* is a metric and (C[a, b], d*) is a metric space. This metric d* is called the

Integral metric on C[a, b]. �
In example (1.1.9), the intergral metric represents the absolute area squeezed between

two continuous functions f and g over the interval [a, b].

f

D

C

g

x = a x = b

x ba

Fig. 1.1.6 Representation of Integral metric given in example (1.1.9)

Remark 1.1.4 If we define the integral d*(f, g) on R[a, b], the set of all R-integrable functions over [a, b],
then d*(f, g) will not be a metric on R[a, b]. In fact d*(f, g) = 0 does not always imply f = g. e.g., let,

f  (x) = 2 ∀ x ∈ [0, 2] and g(x) = 2 for x ∈ [0, 1)
= 1  for x = 1
= 2  for x ε (1, 2]

Then obviously f ≠ g but 
0

2z −| ( ) ( )|f u g u du = 0.

Example 1.1.10  Let S be the set of all sequences of real numbers. Let x = { xi } and y = { yi } be
any two members of S. Define d: S × S → R by

d(x, y) = 
1

m

x y
1 x yi

i i

i ii 1

| |
| |

−
+ −=

∞

∑ ,

m being any integer greater than 1. Show that d is a metric on S.
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Solution:  Since 1
1

1
m

x y
x y mi

i i

i i
i.

| |
| |

−
+ −

<  and ,
1

1 mi
i =

∞

∑  is convergent for m > 1, d(x, y) is finite. It

is clear that d(x, y) ≥ 0 always and since each term of the right hand infinite series is non-
negative, d(x, y) = 0 if and only if | xi – yi | = 0 ∀ i = 1, 2, ... i.e., if and only if xi = yi ∀ i = 1, 2,
... i.e., if and only if x = y.

Moreover, d(x, y) = 1
1

1
111 m

x y
x y m

y x
y xi

i i

i i
i

i i

i iii

| |
| |

| |
| |

−
+ −

=
−

+ −=

∞

=

∞

∑∑  = d( y, x).

To prove triangle inequality we need use the result that for any two real members u, v

| |
| |

| |
| |

| |
| |

u v
u v

u
u

v
v

+
+ +

≤
+

+
+1 1 1

.

Since for u, v ∈ R,  | u + v | ≤ | u | + | v |, we have
1 1

| | | | | |u v u v+
≥

+

i.e., 1 + 
1

1
1

| | | | | |u v u v+
≥ +

+

i.e.,
1 1+ +

+
≥ + +

+
| |

| |
| | | |

| | | |
u v

u v
u v

u v

i.e.,
| |

| |
| | | |

| | | |
| |

| | | |
| |

| | | |
u v

u v
u v

u v
u

u v
v

u v
+

+ +
≤ +

+ +
=

+ +
+

+ +1 1 1 1
 ≤ | |

| |
| |

| |
u

u
v

v1 1+
+

+
Now let x, y, z ∈ S where x = {xi }, y = {yi }, z = {zi }. Choosing u = xi – yi , v = yi – zi , we have

 
| |

| |
| |

| |
| |

| |
x z

x z
x y

x y
y z

y z
i i

i i

i i

i i

i i

i i

−
+ −

≤
−

+ −
+

−
+ −1 1 1

Multiplying both sides by 1
mi

 and then taking summation over i, we get

 
1

1
1

1
1

11 1 1m

x z
x z m

x y
x y m

y z
y zi

i

i i

i i
i

i i

i ii
i

i

i i

i i=

∞

=

∞

=

∞

∑ ∑ ∑−
+ −

≤
−

+ −
+

−
+ −

.
| |

| |
| |

| |
| |

| |

i.e.,  d(x, z) ≤ d(x, y) + d(y, z).
Thus (S, d) is a metric space. �

Example 1.1.11 Let S1 denote the set of all bounded sequences of real numbers. If for x = {xi},
y = {yi} ∈ S1, we define d(x, y) = sup

i
i i|x y |− , then d is a metric on S1.

Solution: Left to the reader.

Example 1.1.12 Let S2 denote the set of all convergent sequences of real numbers. For x = {xi},

y = {yi } ∈ S2 , define d(x, y) = sup
i

i i|x y |− . Show that d is a metric on S2.

Solution: Left to the reader.
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Example 1.1.13 Let l2 denote the set of all real sequences {xn} for which 
n 1=

∞

∑  | xn
2 | < ∞ and let

d({xn}, {yn}) = 
n 1

n n
2

1
2

|x y |
=

∞

∑ −
R
S|
T|

U
V|
W|

. To show that (l2 , d) is a metric space.

Solution:  Before getting into the act of proving whether d defined above is a metric or not, we

should check that 
n =

∞

∑
1

 | xn – yn |2 < ∞. Since {xn} ∈ X and {yn} ∈ X, 
n =

∞

∑
1

 | xn |2 < ∞ and 
n =

∞

∑
1

|

yn |2 < ∞. Further by Cauchy-Schwarz inequality, for each n ∈ N,

k

n

=
∑

1
| xk yk | ≤ 

k

n

k
k

n

k
k

k
k

kx y x y
= = =

∞

=

∞

∑ ∑ ∑ ∑
F
H
GG

I
K
JJ
F
H
GG

I
K
JJ ≤

F
H
GG

I
K
JJ
F
H
GG

I
K
JJ

1

2

1

2

1

2

1

2| | | | | | | |  <  ∞

since the partial sum sequence 
k

n

n nx y
=

∑
R
S|
T|

U
V|
W|1

| |  is convergent. This implies 
n =

∞

∑
1

 | xn yn | is

convergent.

Again 
n =

∞

∑
1

xn
2, 

n =

∞

∑
1

yn
2 and 

n =

∞

∑
1

xnyn being all convergent, the series 
n =

∞

∑
1

(xn – yn)2 is

convergent, ensuring that d({xn}, {yn}) is meaningful.
Non-negativity, positive-definiteness and symmetry of d (. , .) follow trivially. For triangle

inequality it suffices to show that for any {xn}, {yn}, {zn} ∈ X,

d({xn}, {yn}) ≤ d ({xn}, {zn}) + d({zn}, {yn})

From the triangle inequality proved for the Euclidean metric in example 1.1.2, it follows
that for every positive integer n,

i

n

i ix y
=
∑ −
R
S|
T|

U
V|
W|1

2

1
2

( )  ≤ 
i

n

i ix z
=
∑ −
R
S|
T|

U
V|
W|1

2

1
2

( )  + 
i

n

i iy z
=
∑ −
R
S|
T|

U
V|
W|1

2

1
2

( )

Making n approach infinity, it follows that

i
i ix y

=

∞

∑ −
R
S|
T|

U
V|
W|1

2

1
2

( )  ≤ 
i

i ix z
=

∞

∑ −
R
S|
T|

U
V|
W|1

2

1
2

( )  + 
i

i iy z
=

∞

∑ −
R
S|
T|

U
V|
W|1

2

1
2

( )

∴ d ({xn}, {yn}) ≤ d ({xn}, {zn}) + d ({yn}, {zn})
This completes our proof that d (. , .) is a metric. �
Remark 1.1.5 (i) This metric space is known as Real Numerical Hilbert Space.
(ii) It is a kind of generalisation of the Euclidean metric to the case of sequences, thought of as

infinite tuples.
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Example 1.1.14 Trivial Metric  For a non empty set X let us define ρ: X × X → R by
ρ(x, y) = 0 if x = y

 = 1 if x ≠ y.
UVW

Solution: Obviously ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y. ρ(x, y) = ρ(y, x) ∀ x, y ∈ X.
Also for x, y, z ε X, if x = z then x may be equal to y or may not.

So ρ(x, z) = 0 < 2 = 1 + 1 = ρ(x, y) + ρ(y, z) if x ≠ y
and ρ(x, z) = 0 ≤ 0 + 0 = ρ(x, y) + ρ(y, z) if x = y = z.

Again if x ≠ z then x = y and y = z do not hold simultaneously, i.e., either x ≠ y or y ≠ z or
both.

Therefore, ρ(x, z) = 1 ≤ 1 + 0 = ρ(x, y) + ρ(y, z) [in case x ≠ y, y = z]
ρ(x, z) = 1 ≤ 0 + 1 = ρ(x, y) + ρ(y, z) [in case x = y, y ≠ z]
ρ(x, z) = 1 < 1 + 1 = ρ(x, y) + ρ(y, z) [in case x ≠ y, y ≠ z]

Thus ρ satisfies all the conditions to be a distance function. This metric is known as
trivial metric or discrete metric. �

Example 1.1.15 Let Rn denote the set of all real n-tuples, i.e. Rn = {x ≡ (x1,x2, ...xn); xi ∈ R}.

Show that the function dp : R
n × Rn → R  defined by

d x y x y pp
i

n

i i
p p( , ) ( )= ∑ − ≥

=1

1

1| |

is a metric on Rn, known as Minkowski’s metric. [ The set Rn equipped with this metric is
called  lp

n space].

Moreover, lim
p → ∞

 dp  (x, y) = lim
p ( x y ) Max

1 i n x y
i 1

n

i i
p

i i

1
p

→ ∞ ∑ − = ≤ ≤ −
=

 | | | | = d(x, y)

Solution: The non-negativity, positive-definiteness and symmetry of dp (.,.) follow easily. The
triangle inequality follows from the finite form of Minkowski’s inequality, viz.

∑ +F
HG

I
KJ ≤ ∑FHG

I
KJ + ∑FHG

I
KJ ∈

= = =i

n

i i
p

i

n

i
p

i 1

n

i
p

i i

p p p

; , R
1 1

1 1

α β α β α β
1

For the second part,

d x y x y n
i n

x yp
i

n

i i
p

i i
p p( , ) ( )= ∑ − ≤ ≤ ≤ −

=1

1 1

1| | | |Max

∴ lim
p → ∞

 dp (x, y) ≤ lim
p → ∞

 n p

i n

1

Max
1 ≤ ≤

 | xi – yi | as lim
p → ∞

 n p
1

 = 1

Further, 
i

n

i i
p

p

x y
=
∑ −
F
H
GG

I
K
JJ

1

1

| |  ≤ Max Max
1

1

1≤ ≤ ≤ ≤
−F

HG
I
KJ = −

i n
i i

p p

i n
i ix y x y| | | |

∴ dp (x, y) ≥ Max
1 ≤ ≤

−
i n

i ix y| | ∀ p ≥ 1 and so lim
p → ∞

 dp (x, y) ≥ Max
1 ≤ ≤

−
i n

i ix y| |

Hence lim
p → ∞

 dp (x, y) = Max
1 ≤ ≤

−
i n

i ix y| |.
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Remark 1.1.6 The metric Max
1 ≤ ≤

−
i n

i ix y| | obtained as the limiting case of Minkowski’s metric is

indeed the Chebyshev metric appearing in example 1.1.6 Further for p = 1 and p = 2, Minkowski’s
metric reduces to rectangular metric of example 1.1.5 and Euclidean metric of example 1.1.2 respec-
tively.

So far we have furnished a variety of examples of metric spaces.  We are now in a
position to explore some interesting properties of the metric spaces. The results we are going
to prove in the next article aim at primarily spanning the family of metric spaces.

1.2 DEEPER PROPERTIES OF METRIC SPACES

(a) In a metric space (X, d) if x, y, z ∈ X, then | d(x, z) – d(y, z) | ≤ d(x, y).

Proof:  Since d is a metric, by the condition (d3), we have
 d(x, z) ≤ d(x, y) + d(y, z)

or d(x, z) – d(y, z) ≤ d(x, y) ...(1)
Again interchanging x and y, we obtain from (1)

d(y, z) – d(x, z) ≤ d(y, x) = d(x, y) [By (d2)]
or   – {d(x, z) – d(y, z)} ≤ d(x, y) ...(2)

Combining (1) and (2) it follows that
 | d(x, z) – d(y, z) | ≤ d(x, y). �

(b)The convex combination of two metrics d1 and d2 defined on a non-empty set X is
again a metric.
Proof:  Here we are to show that for any x, y  X the function d(., .) defined by :

d(x, y) = λd1(x, y) + (1 – λ)d2(x, y) ; 0 ≤ λ ≤ 1 is a metric.

Non-negativity, positive-definiteness and symmetry of d(.,.) trivially follow. Since for
any x, y, z  X,

d(x, z) + d(z, y) λd1(x, z) + (1 – λ)d1 (z, y) + λd1(z, y) + (1 – λ)d2 (z, y)
= λ[d1(x, y) + d1 (z, y)] + (1 – λ)[d2(x, z) + d2(z, y)
≥ λd1(x, y) + (1 – λ)d2 (x, y)
= d(x, y) �

Remark 1.2.1 On the basis of the above one may conclude the set of metrics defined on a non-empty set
is a convex set.

(c) If (X, d) is a metric space then X,
d

1 d+
F
HG

I
KJ  is also a metric space.

Proof: For x, y ∈ X let us agree to write d1(x, y) = 
d x y

d x y
( , )

( , )1 +
We need to prove that d1 is a metric on X.
Since d(x, y) ≥ 0, it is clear that d1(x, y) ≥ 0 and d1(x, y) = 0 if and only if d(x, y) = 0 i.e., if

and only if x = y. Thus d1 satisfies condition (d1).
Next if x, y ∈ X, then

d1(x, y) = 
d x y

d x y
d y x

d y x
( , )

( , )
( , )

( , )1 1+
=

+
 = d1(y, x).
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Finally to prove the triangle inequality we consider the function ϕ(t) = t
t1 +

, t ∈ R, t > 0.

Obviously ϕ(t) is continuous and derivable for t > 0 and

ϕ′(t) = 
1

1 1
1
1

1
12 2 2+

−
+

= + −
+

=
+t

t
t

t t
t t( ) ( ) ( )

 > 0, ∀ t > 0.

Therefore ϕ(t) is monotonically increasing function for t > 0.
Now let x, y, z ∈ X. Since d is a metric, by (d3), d(x, z) ≤ d(x, y) + d(y, z) where both side

of the inequality is positive. Therefore ϕ(d(x, z)) ≤ ϕ(d(x, y) + d(y, z))

i.e.,
d x z

d x z
d x y d y z

d x y d y z
( , )

( , )
( , ) ( , )

( , ) ( , )1 1+
≤ +

+ +

= 
d x y

d x y d y z
d y z

d x y d y z
( , )

( , ) ( , )
( , )

( , ) ( , )1 1+ +
+

+ +
 ≤ 

d x y
d x y

d y z
d y z

( , )
( , )

( , )
( , )1 1+

+
+

i.e.,  d1(x, z) ≤ d1(x, y) + d1(y, z)
This completes the proof.

Note 1.  The triangular inequality can also be proved in the following way:
By (d3), d(x, z) ≤ d(x, y) + d(y, z) ; x, y, z ∈ X
Now d1(x, z) – d1(y, z)

= d x z
d x z

d y z
d y z

( , )
( , )

( , )
( , )1 1+

−
+

= d x z d x z d y z d y z d x z d y z
d x z d y z

( , ) ( , ) ( , ) ( , ) ( , ) ( , )
{ ( , )} { ( , )}

+ − −
+ +1 1

= d x z d y z
d x z d y z

d x y
d x z d y z

( , ) ( , )
{ ( , )}{ ( , )}

( , )
{ ( , )}{ ( , )}

−
+ +

≤
+ +1 1 1 1

[By (1)]

Now {1 + d(x, z)}{1 + d(y, z)} = 1 + d(x, z) + d(y, z) + d(x, z) d(y, z)
 ≥ 1 + d(x, y) + d(y, z)
 ≥ 1 + d(x, y) [By triangle inequality]

∴  d1(x, z) – d1(y, z) ≤ 
d x y

d x y
( , )

( , )1 +
 = d1(x, y)

Thus  d1(x, z) ≤ d1(x, y) + d1(y, z).

Note 2. d
d1 +

 defined on the non-empty set X is a useful metric in the sense it is a bounded

metric irrespective of the choice of metric d. This is one way of having a standard bounded metric
defined on X.

(d) If (X, d) be a metric space and φ(x), x ∈ R is a monotone increasing concave function
that vanishes for x = 0, then φ0 d: X × X → R is again a metric.
Proof: As d is a metric, d(x, y) ≥ 0. Again φ being monotone increasing φ [d(x, y)] ≥ φ(0) = 0 ∀ x,
y ∈ X. This ensures non-negativity of  φ0 d

Again d(x, y) = d(y, x)  ⇒ φ [d(x, y)] = φ [d(y, x)] ⇔ (φ0 d)(x, y) = (φ0 d)(y, x), implying
symmetry property of φ0 d.

If  φ [d(x, y)] = φ (0), then as φ is monotone, x = y  follows, proving that (φ0 d) is positive
definite.
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Finally we prove triangle inequality in the following.
Since f is a concave function,  0 ≤  λ ≤ 1
φ(λa + (λ – l)b) ≥ λφ(a) + (1 – λ)φ(b)

φ(p) = φ
q

p q
p

p q
p q

+
+

+
+

F
HG

I
KJ. . ( )0  ≥ 

q
p q+

 φ(0) + 
p

p q+
 φ(p + q) = 

p
p q+

 φ(p + q)

where a b p q
q

p q
= = + =

+
F
HG

I
KJ0 ; ( ) ; λ

φ(p) = φ
q

p q
p

p q
p q

+
+

+
+

F
HG

I
KJ. . ( )0  ≥ q

p q+
 φ(0) + 

p
p q+

 φ(p + q) = 
p

p q+
 φ(p + q)

where a b p q
p

p q
= = + =

+
F
HG

I
KJ0 ; ( ) ; λ

∴ φ (p) + φ (q) ≥ φ (p + q)
Putting p = d(x, z) and q = d (z, y), we get φ (d(x, z)) + φ(d(z, y)) ≥ φ(d(x, z) + d(z, y)) ≥

φ (d(x, y)) as d is a metric and φ is monotone increasing.
∴ (φ0 d) (x, z) + (φ0 d) (z, y) ≥ (φ0 d)(x, y)
This completes the proof of the fact φ0 d: X × X → R is metric.

As a special case to this, choose φ(t) = 
t

t1 +
. (It is monotone increasing concave function

that vanishes for t = 0)

Hence φ(d(x, y)) = 
d x y

d x y
( , )

( , )1 +
  is a metric on X, no matter what d (.,.) is. This envisages

that property (d) is a generalisation of property (c).

Theorem 1.2.1  If (X, d) is a metric space then (X, d1) is also a metric space  where
 d1(x, y) = Min. {1, d(x, y)}, x, y ∈ X.

Proof: The proof is similar to the solution of example 1.1.7. �

Theorem 1.2.2  Let X1 , X2 , ... Xn be metric spaces with underlying metrics d1, d2 , ..., dn
respectively.

Define  d: Π Π
i 1

n

i 1

n
Xi Xi

= =

F
HG

I
KJ ×

F
HG

I
KJ  → R as

  d(x, y) = Max. {d1(x1, y1), d2(x2, y2) ... dn(xn, yn)}
where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn); xi , yi ∈ Xi , i = 1, i, ..., n.

Proof:  Clearly d(x, y) ≥ 0 for all x, y ∈ Π
i

n

= 1
Xi, since each di(xi, yi) ≥ 0, i = 1, 2, ..., n.

Now if x, y ∈ Π
i

n

iX
= 1

 be such that x = y, where x ≡ (x1, x2, ..., xn), y ≡ (y1, y2, ..., yn) then

xi = yi ∀ i = 1, 2, ..., n.
∴  di(xi, yi) = 0 ∀ i = 1, 2, ..., n.
This implies  Max. {d1(x1, y1), ..., dn(xn, yn)} = 0. i.e., d(x, y) = 0
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Conversely, let d(x, y) = 0 for x, y ∈ Π
i

n

iX
= 1

.

Then Max. {d1(x1, y1), d2(x2, y2), ..., dn(xn, yn)} = 0
This implies di(xi, yi) = 0 ∀ i = 1, 2, ..., n,
∴   xi = yi ∀ i = 1, 2, ......, n, yielding x = y.

If x, y ∈ Π
i

n

iX
= 1

then d(x, y) = Max. {d1(x1, y1), d2(x2, y2), ..., dn(xn, yn)}

 = Max. {d1(y1, x1), d2(x2, y2), ..., dn(yn, xn)} = d(y, x).

Finally, let x, y, z ∈ Π
i

n

iX
= 1

 where x ≡ (x1, x2, ..., xn), y ≡ (y1, y2, ..., yn), z ≡ (z1, z2, ..., zn),

xi, yi, zi ∈ Xi , i = 1, 2, ..., n.
Now for each i, di(xi, zi) ≤ di(xi , yi) + di(yi , zi)

≤ Max. {d1(x1, y1), d2(x2, y2), ..., dn(xn, yn)}
+  Max. {d1(y1, z1), d2(y2, z2), ..., dn(yn, zn)}

The right hand side of the inequality is an upper bound of di(xi , zi) for each i
∴ Max. {d1(x1, z1), ..., dn(xn, zn)} ≤ Max. {d1(x1, y1), ..., dn(xn, yn)}

+ Max. {d1(y1, z1), ..., dn (yn, zn)}
i.e., d(x, z) ≤ d(x, y) + d(y, z). �

Remark 1.2.2 There are alternative ways of defining a product metric on the cartesian product  
i

n

iX
=

∏
1

.

One simple alternative is given by d(x, y) = 
i

n

id
=
∑

1

(xi yi) where x = (x1, x2, ...., xn) ; y = (y1, y2, ....., yn) and

xi, yi,  Xi

Non-negativity, positive-definiteness and symmetry of this function d defined on

i

n

i
i

n

iX X
= =

∏ ∏
F

H
GG

I

K
JJ ×

F

H
GG

I

K
JJ

1 1

 follow trivially. Triangle inequality follows from the fact that for each i=1,2,...,n

di(.,.) satisfies triangle inequality :

d(x, y) + d(y, z) = 
i

n

i i i
i

n

i i id x y d z y
= =
∑ ∑+

1 1

( , ) ( , )  = 
i

n

i i i
i

n

i i i
i

n

i i id x y d z y d x y
= = =
∑ ∑ ∑+

R
S|
T|

U
V|
W|

≥
1 1 1

( , ) ( , ) ( , )

(c) One can also think of the product of a countably infinite number of metric spaces (Xi, di), i = 1,
2, ..... but the appropriate product metric would not be the supremum of the factor metrics (c.f. theorem
1.2.2) because supremum of an infinite set is not always finite. It is interesting to see that the standard
bounded metric Min {1, di(xi, yi)} corresponding to the factor metrics di(xi, yi) defined on Xi work as prime
ingredients  of any product metric. The following theorem illustrates this observation.



18 METRIC SPACES AND COMPLEX ANALYSIS

Theorem 1.2.3  Product of acountably infinite number of metric spaces (Xi , di) i = 1, 2, .... will
be a metric space provided we define

d: 
i

i
i

iX X
=

∞

=

∞

∏ ∏
F
H
GG

I
K
JJ ×

F
H
GG

I
K
JJ

1 1

 → R as d(x, y) = 
i

i
=

∞

∏
1

1
2

 Min {1, di,(xi, yi)}

where x = (x1, x2, .....);  y =  (y1, y2, .....)  xi, yi , i = 1, 2, .....
Proof  Min {1, di (xi, yi)} being a standard bounded metric on the  component set Xi for any xi,

yi  Xi the series 
i

i
=

∞

∑
1

1
2

 {1, di (xi, yi)} dominated by the geometric series 
i

i
=

∞

∑
1

1
2

 is convergent via

comparison test. Hence d(x, y) is well-defined.
Non-negativity, positive definiteness and symmetry of d(.,.) follow easily.  For proving

triangle inequality we consider three elements x = (x1, x2, ...), y = (y1, y2, .....) and z = (z1, z2...)

belonging to 
i

iX
=

∞

∏
1

.

d(x, y) + d(y, z) = 
i

i
=

∞

∑
1

1
2

 Min {1, di(xi, yi} + 
i

i
=

∞

∑
1

1
2

 {1, di(yi , zi)}

= 
i

i
=

∞

∑
1

1
2

 [Min {1, di(xi , yi)} + Min {1, d, (yi, zi)}]

≥ 
i

i
=

∞

∑
1

1
2

 Min {1, di (xi, yi, zi)} = d(x, z)

Thus d (.,.) satisfies all properties of a metric. �

Remark 1.2.3 The geometric series 
i

i
=

∞

∑
1

1

2
 dominating the series 

i
i

=

∞

∑
1

1

2
 Min {1, di(xi, yi)} representing

d(x, y) in the above theorem can be substituted by any other convergent positive term series, e.g., the p-

series 
i

pi=

∞

∑
1

1
 p > 1. In this case the working function d : 

i
i

i
iX X

=

∞

=

∞

∏ ∏
F

H
GG

I

K
JJ ×

F

H
GG

I

K
JJ

1 1

  → R will be d(x, y) =

i
pi=

∞

∑
1

1
 Min. (1, di) (xi , yi)}, p > 1

In the problem 13 we ask the reader to verify that d (.,.) is a metric.

The standard bounded metric Min {1,di (xi, yi)} associated with the component Xi can be replaced
by another standard bounded metric, viz. di (xi, yi)/(1 + di (xi, yi)) so that the working function

d : 
i

i
i

iX X
=

∞

=

∞

∏ ∏
F

H
GG

I

K
JJ ×

F

H
GG

I

K
JJ

1 1

  → R becomes d(x, y) = 
i

i
i i i

i i i

d x y
d x y

=

∞

∑ +
1

1

2 1
.

( . )
( , )

The proof that d(.,.) is a metric is left to the reader (see problem 13)
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1.3 CONSTRUCTION OF A METRIC FROM A PSEUDOMETRIC

Definition 1.3.1 A function ρ: X × X → R is said to be a pseudometric on a non-empty set X
iff

(i) ρ(x, y) ≥ 0 ∀ x, y ∈ X (non-negativity)
(ii) x = y ⇒ ρ (x, y) = 0 ∀ x, y ∈ X but ρ(x, y) = 0 ⇒ x = y ∀ x, y, ∈ X

(iii) ρ(x, y) = ρ(y, x) ∀ x, y ∈ X (symmetry)
(iv) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) ∀ x, y ∈ X (triangle inequality)
The function ρ: R × R → R defined by ρ(x, y) = |xk – yk|, k being a positive integer,

satisfies non-negativity, symmetry and triangle inequality. However, if k is odd, ρ defined
above is a metric but if k is even, ρ defined above is a pseudometric. Had R been replaced by C,
ρ turns out to be a pseudometric for k ≠ 1 as the highest degree of an irreducible polynomial
over complex field is unity.

As a second example of pseudometric space, consider the class X = C(M) of all convergent
sequences in an arbitrary metric space (M, d) (see definition 3.1.1). Let x ≡ {xn} and y ≡ {yn} be

any two elements of X such that lim
n

nx
→ ∞

= 1   and lim
n

ny m
→ ∞

= .

Define  ρ: X × X → R by the rule ρ(x, y) = d(l, m). Obviously ρ satisfies non-negativity,
symmetry and triangle inequality but is not positive-definite since in (M, d) one can have two

different sequences converging to the same limit. (e, g., in usual metric space R, 1
1

+RST
UVWn

 and

both 1
1−RST
UVWn

 converge to limit 1). Hence ρ defined above is a pseudometric and (X, ρ) is a

pseudometric space.
On X = C(M) we now define a relation ~ as x ~ y iff ρ(x, y) = 0 ∀ x, y ∈ X.
It is a routine exercise to verify that ~ indeed is an equivalence relation on X and thus

partitions it into a number of disjoint equivalence classes—each class characterised by the fact
that it contains all sequences converging to the same limit. Let [x] denote the equivalence class

containing x ≡ {xn} ∈ X and �X  denote the family of all the equivalence classes generated by ~.

Hence �X  = { [x]: x ∈ X}

Define � : � �ρ X X×  → R by the rule  �ρ ([x], [y]) = ρ(x, y) and observe that is a metric on �X .

In this way we construct a metric space ( � , �X ρ ) from the pseudometric space (X, ρ).
Following this example as a guideline one can show that every pseudometric space can

be always crystallised into a metric space by virtue of defining an equivalence relation on the
underlying non-empty set. This artifice is similar to that of extracting an injective map from
any arbitrary map defined on some non-empty set.

EXERCISE

1. Let x, y ∈ Rn where x ≡ (x1, x2, ..., xn ), y ≡ (y1, y2, ... yn ) xi , yi ∈ R, i = 1, 2, ..., n. Define  d1: R
n × Rn

→ R by

d1(x, y) = Max.
1≤ ≤

−
i n

i ix y| |

Show that d1 is a metric on Rn.
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Examine whether d2(x, y) = Min.
1≤ ≤

−
i n

i ix y| | is a metric or not.

2. Let S2 be the class of all convergent sequences of real numbers. For x = {x1, x2, ...... xn .....} and

y = {y1, y2 ...... yn ......} ∈ S2, define d(x, y) = sup
i

 | xi – yi |. Then prove that d is a metric on S2.

3. Let (X1, ρ1) and (X2, ρ2) be metric spaces and let x ≡ (x1, x2), y ≡ (y1, y2) ∈ X1 × X2.

Define ρ(x, y) = Min. (ρ1 (x1, y1), ρ2(x2, y2)). Examine whether ρ is a metric on X1 × X2.

[Hints. ρ is not a metric because Min. (ρ1(x1, y1), ρ2(x2, y2)) = 0 does not imply both ρ1(x1, y1) and
ρ2(x2, y2) are equal to zero and so (x1, x2) may not be equal to (y1, y2)].

4. In a metric space (X, d) prove that

| d(x1, y1) – d(x2, y2) | ≤ d(x1, x2) + d(y1, y2); x1, x2, y1, y2 ∈ X.

5. In a metric space (X, d) prove that

 d(x1, xn) ≤ d(x1, x2) + d(x2, x3) + ... + d(xn–1, xn); x1, x2, ..., xn ∈ X.

6. Let B be the collection of all absolutely convergent series of real numbers. Show that (B, d) is a

metric space provided we define d(x, y) = 
i =

∞

∑
1

 | xi – yi |.

7. Let R2 denote the set of all ordered pairs of real numbers. If for any x = (x1, x2) and y = (y1, y2) in
R2 we define

d(x, y) = 
| | | | | |,
| |

x y x y x y
x y x y

1 1 2 2 2 2

1 1 2 2

+ + − ≠
− =

RST
if

if

then show that (R2, d) is a metric space.
8. Show that Cn, the set of all ordered n tuples of complex numbers will form metric spaces w.r.t.’

the distance functions defined in examples 1.1.3, 1.1.5 and 1.1.6.

9. (i) Show that the set R of real numbers does not form a metric space w.r.t. the function d: R × R
→ R defined by d(x, y) = | cos (x – y) |

(ii) For what values of k is the funcion d(.,.) defined by

d(x,y) = | |x y k−
1

, k = 1, 2, .....

is a metric on the set R of real numbers?

(iii) Show that the funcion d1(.,.) defined by

d1 (x, y) = 
| |

| |
x y xy

x y xy
− >

− − <
RST

if
if

0
2 0

is a metric on the set R \ [-1,1]

10. Consider the set X = { f(t): t ∈ R and 
a

bz  | f (t) |p dt < ∞}. Define d: X × X → R by 

d(x, y) = 
a

b
p p

f t g t dtz −
L
N
M

O
Q
P| ( ) ( )|

1

. Show that (X, d) is a metric space, known as-Lp space.
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11. Suppose that (Xi, di) is a metric space for i = 1, 2, ...., m and let X = 
i

m

=
∏

1
Xi. Show that the function

d that associates with every pair of points x = (x1, x2, ......, xn) and y = (y1, y2, ....., yn) of the set the

numbers d(x, y) = 
i

m

=
∑

1
 di (xi, yi) and d(x, y) = Max

1 ≤ ≤i m
 {di (xi, yi)} are metrics on X.

12. Let (X, dX) and (Y, dY) be two metric spaces. Show that d: X × Y → R defined by d((x1, y1), (x2, y2))

= { ( , ) ( , )}d x x d y yX Y
2

1 2
2

1 2
1
2+  " (x1, y1), (x2, y2) ∈ X × Y

is a metric on X × Y (If in a particular, X = Y = R and dX , dY are usual metrics, then we get the
Eucliden metric in R2.) Show also, by method of induction, that the distance between any two
points in Euclidean space Rn can be defined by using above technique.

13. Show that the functions d(.,.) and  d  (.,.)  defined on 
i

i
i

iX X
=

∞

=

∞

∑ ∑
F

H
GG

I

K
JJ ×

F

H
GG

I

K
JJ

1 1

 by

(i) d(x, y) = 
i

i i i

i i i

d x y
d x y

=

∞

∑ +
1

1
2 1

.
( , )

( , )
(ii) d(x, y) = 

i
pi=

∞

∑
1

1
 Min {1, di  (xi , yi)}

proposed in Remark 1.2.3 are metrics.


